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J .  Phys. A: Math. Gen. 20 (1987) 121-131. Printed in the U K  

Boson representation of Fermi systems: nature and properties 
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Received 17 February 1986, in final form 13 May 1986 

Abstract. Based on Girardeau’s composite-panicle theory the PPP (extended Hubbard) 
Hamiltonian is represented in terms of ideal-boson operators. A major unsolved problem 
was to find (approximate) eigenstates of the Hamiltonian which, at the same time, satisfy 
certain subsidiary conditions. The latter are necessary to ensure that the mapping of the 
fermion space into the space of boson states is unique. In the present paper a partial 
solution to the above mentioned problem is presented by using some arguments from the 
representation theory of the symmetric group. The results are of immediate practical 
relevance for all calculations dealing with the eigenvalue problem of the Hamiltonian in 
ideal-boson space. 

1. Introduction 

In recent years electron-pair theories have become popular in various branches of 
physics. In solid-state theory, for example, pair theory concepts are presently used to 
study exciton systems at high density and the related problem of Bose-Einstein 
condensation of excitons (Rashba and Sturge 1982). Another field, where pair theories 
might be useful, is the theory of the metal-insulator transition (Mott 1974). In this 
context a pair-theory approach to the Hubbard (1963) Hamiltonian has been formulated 
by the present author (Barentzen 1983, hereafter referred to as I ) .  More recently a 
variational treatment of the Hubbard model based on similar ideas has been worked 
out by Katsnelson and Irkhin (1984). 

Electron pairs are sometimes denoted as quasibosons, since the commutation 
relations of fermion-pair operators resemble those of elementary (ideal) bosons. The 
basic idea of the pair-theory method is to represent the fermion Hamiltonian by 
ideal-boson operators and to diagonalise it in a boson space. Mathematically this 
corresponds to a mapping of the fermion space into a space of boson states. Such 
mappings can be performed in a variety of ways; a good account of several of these 
methods is given in the monograph by Ring and Schuck (1980). 

A particularly simple and elegant formulation of the many-body problem for 
composite particles has been worked out by Girardeau (1963). In his method the 
Hamiltonian I? in boson space takes a rather simple and familiar form. The price one 
pays for the simplicity of the Hamiltonian is that all eigenstates IT,+,) of I? are required 
t? be simultaneous eigenstates of a certain exchange operator I?, which commutes with 
H and the pair occupation number operator fi: 

it*,+,)= - ; M ( M - l ) 1 q M ) .  (1.1) 
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This subsidiary condition, where M ( M  = 1 , 2 , .  . .) are the eigenvalues of fi, guarantees 
that only those boson states lqb,) are considered, which satisfy the Pauli principle. 
The same condition is also necessary to ensure that the mapping of the fermion space 
into the space of boson states is unique. In practical calculations, for example, 
variational treatments, the fulfilment of the subsidiary condition causes severe prob- 
lems, because each trial vector has to be chosen a priori such that condition (1.1) is 
satisfied. So far the problem has not been solved in a satisfactory manner and this is 
probably the reason why no calculations based on the pair-theory method have been 
published so far. 

The aim of the present paper is to derive the most general eigenvector IqM) of 
equation (1.1) for arbitrary M ,  and thus to provide a partial solution to the problem 
outlined above. The essential elements of the pair-theory method are summarised in 
§ §  2 and 3, the treatment there being mainly based on Girardeau's (1963) composite- 
particle theory. The method will be illustrated by choosing the PPP (extended Hubbard) 
model as an  example. The eigenvalue problem (1.1) is studied in 0 4. The eigenvalues 
as well as the general form of the eigenvectors of 2 have already been obtained by 
Girardeau (1963, appendix). For - M (  M - 1)/2, the lowest eigenvalue of 2, the most 
general eigenvector satisfying equation (1.1) is then derived in an obvious way by 
using techniques from the representation theory of the symmetric group (Boerner 
1963). From the most general IqM) a special eigenvector will be obtained, which 
might be a good trial vector for a variational treatment of A. Finally the main results 
of the present work are summarised in 5 5. 

2. The overcompleteness problem 

The main features of the pair-theory method can be more easily understood by referring 
to a particular model. The Hamiltonian to be chosen here is the well known PPP 

Hamiltonian (Parr 1963, Kouteck9 et a1 1985), often also denoted as extended Hubbard 
model. In the usual Fock-space representation the Hamiltonian may be written as 

+ t  1 ~T(q)atk+q,~,aX'-q,,rak.,al, (2.1) 
U q k k '  

where the U:, and ak,  are, respectively, the creation and annihilation operators for 
an electron with spin cr and reduced wavevector k. The one-particle part of (2.1) is 
the usual hopping term, while the remaining terms represent the Coulomb interactions. 
Here U ( q )  and C(q)  = U ( q )  - U /  N denote the two-electron Coulomb repulsion 
integrals, where U describes the on-site interaction. Since the precise analytical forms 
of the matrix elements are irrelevant for our purposes, they will not be given here. 
The Hubbard (1963) model is related to the PPP Hamiltonian (2.1) and can be recovered 
from the latter by replacing U (  q )  by U /  N. Hereafter it will be assumed that the total 
number Ne of electrons equals the number N of lattice sites (half-filled band case). 

The PPP Hamiltonian possesses several constants of motion. They need not all be 
listed here, since they have been exhaustively discussed in the recent paper by Kouteck9 
er a1 (1985). The only constants of motion needed in the following are the number 
operators N, = X k  a;,ak,, where, because of the relation N;  + N ,  = N, it  suffices to 
consider only N J  and its associated eigenvalues M ( M  = 0, 1, 2, . . .). The Hamiltonian 
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( 2 . 1 )  will now be rewritten in terms of particle-hole (p-h) operators. To this end a 
new vacuum state is introduced by 

1%) = n a:$9 ( 2 . 2 )  
k 

where the product extends over all wavevectors of the reduced zone and the akr, are 
redefined as 

bk for (+ = .1 (particles) 
for (+ = (holes). u k o  = { c: ( 2 . 3 )  

The bk and ck both annihilate the new vacuum and all particle operators anticommute 
with all hole operators because they refer to different spin components. Moreover, 
I*o) is an  eigenvector of both NI and H with respective eigenvalues M = O  and 
Eo= N z f i ( 0 ) / 2 .  

The new fermion operators are now used to construct the p-h operators; they are 
defined by 

Pk(q)= Ck+qbk P h )  = bikCiktq. (2.4) 

Unfortunately these operators satisfy rather complicated commutation relations, as 
was shown by Girardeau (1963)  and in paper I .  Since they resemble those of elementary 
(ideal) bosons, fermion pairs are sometimes also denoted as quasibosons. To obtain 
H in terms of the p-h operators, let Q M  denote the subspace spanned by all eigenvectors 
of NJ for some fixed eigenvalue M > 0 of NI (the trivial case M = 0 will be excluded 
here and in the following, since it has already been solved above). An arbitrary vector 
19,) of Q M  has the form 

1 
l T M ) = -  c $kl k M ( q 1  * . .  q M ) l ( k l q l )  * ( k M q h l ) )  ( 2 . 5 ~ )  

M ! k ,  k u  91 qu 

where 

I(k,q,) " '  ( ~ M q M ) ) = P i k l ( q l )  " ' P : , ( q M ) l * o )  (2 .56 )  

and $ is an  arbitrary coefficient function. Then, by using the same arguments as in 
paper I, we find that on any subspace Q M  the p-h number operator Ni takes the form 

while the PPP Hamiltonian is obtained as 

where 

and 

( 2 . 7 b )  

( 2 . 7 ~ )  
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while the operators r , (q )  in ( 2 . 7 ~ )  are given by 

( 2 . 9 ~ )  

(2 .9b )  

In view of the complicated form of the p-h commutators it would be highly desirable 
to see, if there is a possibility of expanding the quasiboson operators p k ( q )  in terms 
of ideal-boson operators B k ( q ) ,  possibly at the cost of some additional terms in the 
Hamiltonian. This is the basic idea of the pair-theory method. For this purpose it 
would be necessary to map the spaces Q M  together with their associated operators 
into a space of ideal-boson states. Before this can be done, however, a serious 
mathematical obstacle has to be overcome, which is inherent in all composite-particle 
theories. Namely, it generally turns out that the set of all product states (2 .56 )  is 
overcomplete for all M 2 2 .  Since the problem has been discussed in detail by Girardeau 
(1963) and the present author (paper I ) ,  only the main arguments will be provided 
here without proof. Overcompleteness implies, of course, that a given vector IY' of 
%,,,, ( M  2 2 )  does not possess a unique expansion in terms of the product states ( 2 . 5 6 )  
and, hence, would have many images in ideal-boson space. 

There are several ways how to overcome the overcompleteness problem; some of 
these methods have been reviewed by Ring and Schuck (1980).  In Girardeau's (1963) 
composite-particle theory on which the present work is based, the problem is solved 
by imposing subsidiary conditions on the space of coefficient functions $ (equation 
( 2 . 5 ~ ) )  so that the latter all represent physically admissible many-pair states, i.e. states 
having the correct symmetry under exchange of fermions between different pairs, and 
thus satisfying the Pauli principle. The subsidiary conditions imposed by Girardeau 
(1963) are 

K t # k l  k w  ( 91 * * q M  = - $kl k, ( 91 . . q M  ) l ~ i < j ~  M (2 .10~)  

where K,4  is defined by (see paper I )  

K & k ,  k w ( q l  . . . q ~ ) = $ k ,  k w ( 4 i  . . .  q,+k,-k,...q,+k,-k,...qM). (2 .10b)  

While it is not difficult to show that any coefficient function satisfying (2 .10)  also obeys 
the Pauli principle, it requires more effort to prove that the same conditions just sufice 
to remove the overcompleteness of the product states (2 .5b ) .  For a proof of this assertion 
the reader is again referred to Girardeau's (1963) paper. In summary, any given vector 
I \ I I M )  of Q M  can be uniquely represented by an expansion such as ( 2 . 5 a ) ,  provided 
the coefficient function JI satisfies the subsidiary conditions (2 .10) .  

The functions CC, and K,,$ only differ by a fermion interchange (either particles or  
holes) between pairs i and J ( 1  S i < j  G M ) .  This can be more easily seen in the 
Wannier representation. The latter is obtained by means of the relation 

(2.11) 

the p ' , (n )  denoting the p-h creation operators in the Wannier representation. The 
Fourier coefficients (mn Ikq) are defined by 

( m n l k q ) = ( k q l m n ) * =  N - L e x p { i [ k R , - ( k + q ) R , , , ] }  (2.12) 
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where R, and R, are lattice vectors. With the help of (2.11) the p-h operators in 
( 2 . 5 ~ )  are now expressed in terms of the p k (  n ) .  This yields the following relation for 
the coefficient function (L in the Wannier representation: 

(Lm, m , ( n i . .  . n,)= C ( m i n i l k i q i ) .  . . ( m M n M l k M q M ) ( L k ,  k , ( q i . .  . q , ) .  
k i  ku 4 1  4ci 

(2.13) 

The counterpart of equation (2.10b) in the Wannier representation is then obtained 
on multiplying (2.13) by K,] and inserting the RHS of (2.10b) for K,$. A little 
manipulation gives 

K , $ m ,  m y  ( n ,  . * . n~ ) 

=$,, m u ( n ,  . . .  I l l . . .  n , . . .  n M )  

= $m, m, m, m M ( n l  . . . n M )  I < i < j < M  (2.14) 

where the second line of (2.14) follows from the fact that $ is invariant with respect 
to interchanges of whole pairs (see paper I ) .  By equations (2.14) the K,] operators are 
now easily recognised as fermion interchanges; these expressions will also be useful 
later in § 4. 

Rather than picking out one particular pair of indices i and j, it is most convenient 
for the subsequent development to sum over all pairs ( U )  and to state the subsidiary 
conditions (2.10) in form of the eigenvalue equation 

( 2 . 1 5 ~ )  K$k, k u ( q l . .  . q M M ) = - t M ( M - l ) $ k ,  k , , ( q l .  " q M )  

where 

(2.15 b) 

will be referred to as exchange operator. The eigenvalue problem (2.15) is the main 
object of the present paper; its solution will be presented in § 4. 

3. Boson expansion of the Hamiltonian 

The results of the preceding section enable us to perform the mapping of the spaces 
"UM and their associated operators into a space of ideal-boson states. In paper I such 
a mapping has already been carried out for the Hubbard model, and the arguments 
presented there can be readily extended to the more general case under consideration. 

The boson space is constructed by means of a boson vacuum 19,) and boson 
creation and annihilation operators B:( q )  and B k (  q ) ,  respectively, satisfying the 
commutation relations 

I B k ( q ) ,  B k ' ( q ' ) l = o  l B k ( q ) ,  B:'(q')l = S k k ' s q q '  (3.1) 
together with the condition Bk( q)l9,.,) = 0. The ideal-state space &M is then constructed 
as follows. For any vector I*,) of "UM,  whose coefficient function t,b has been made 
unique by imposition of the subsidiary condition (2.15), we define its unique image 
in "U, by 
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(3.2b) 

The ideal-state space 4M is then defined to be the set of all such states IqM) as (qM) 
runs over all of qM. 

The subsidiary condition (2.15) can now be reformulated as an eigenvalue problem 
in Q M .  As has already been shown in paper I ,  the ideal-space representation of (2.15) 
is given by 

(3.3u) I+PM) = - f M ( M  - l)1VM) 

where k is defined as follows: 

(3.36) 

A comparison of equations (3.3) and (2.15) reveals that K and I? both represent the 
same exchange operator, but in different spaces. Hence, only those vectors 1qM) 
satisfying ( 3 . 3 ~ )  can be vectors of the ideal-state space 4,,,,. This implies, for example, 
that the product states (3.2b) themselves are not contained in 4,,,, because they 
obviously do not satisfy ( 3 . 3 ~ ) .  Thus the latter condition leads to a restriction of the 
space of all possible M-boson states to a proper subspace. 

The next problem is to express H M ,  equations (2 .7) ,  in terms of ideal-boson 
operators. Quite generally, the correspondence between operators 0 on %M and those 
0 on &M is determined by expressing first O I q M )  in the form (2.5a), then using (3.2), 
and finally identifying the result as some operator 6 acting on I*,,,). The first task, 
therefore, is to calculate H, A somewhat lengthy calculation paralleling that 
already performed in I (appendix B) for the Hubbard model yields 

1 
H M / q M ) = -  2 2 I H M $ k I  k,,(ql...qM)}l(klql)...(kMqM)) (3.4) 

M ! k l  k v q 1  q v  

where the expression in curly brackets is given by 

and the operators are defined by 

(3 .5b )  

(3.5c) 

(3.6) 
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where the coefficient function H,,& has to be the same as in (3.4). One may now ask 
what operator fi, expressed as an explicit function of the ideal operators B k ( q )  and 
B:(q ) ,  leads to equation (3.6) with expressions (3.5) for H,&. Such an operator has 
already been constructed for the Hubbard Hamiltonian in paper I. By a slight extension 
of the arguments presented there one readily verifies that the following operator has 
the desired properties: 

A = E , + & + f i j ,  (3.7a) 

where 

f i l  = c W k k ' ( q ) B : ( q ) B k ' ( q ) - c  c U ( k ) B : ' ( q ) B ~ ( q ' ) B p ( q ' + k ) B k ' + k ( q - k )  (3.7b) 
q k k '  94' k k ' p  

(3.7c) 

(3.7d) 

In the same way the ideal-space image of the pair occupation number operator (2.6) 
is obtained as 

Equations (3.3), (3.7) and (3.8) represent the ideal-space formulation of the PPP 

Hamiltonian. One realises that fi is Hermitian and the quantum number M no longer 
explicitly occurs. Since fi is derived from (2.6), it clearly commutes with f?. Moreover, 
since fi and &' are defined on 4M and any vector of that space has to satisfy (3.3), 
fi, fi and €? must possess common eigenvectors. This, in turn, is only possible if all 
these operators commute: 

[ fi, B ] = [ fi, R 3 = [ Ei, fi ] = 0. (3.9) 
A somewhat lengthy but straightforward calculation shows that (3.9) is in fact fulfilled. 

Since the main object of the present paper is to investigate the properties of the 
exchange operator, no attempt will be made here to find the (approximate) eigenstates 
and eigenvalues of I?. As far as the Hubbard Hamiltonian is concerned, some arguments 
have been provided in I indicating that its boson transcription is really the faithful 
image of the original Hamiltonian, both yielding identical spectra. So far, in all 
practical calculations, for example, variational treatments, the fulfilment of the sub- 
sidiary condition (3.3) has caused severe problems, since any trial vector has to be 
chosen a priori such that (3.3) is satisfied. This clearly shows why it is worthwhile 
first to study carefully the properties of the exchange operator, 

4. Properties of the subsidiary condition 

The problem of finding the eigenstates of the exchange operator is closely related to 
the representation theory of the symmetric group SP,,,, i.e. the group of all permutations 
of M objects. This is due to the fact that, according to (2.15b), K is the sum over all 
interchanges (transpositions) K,j and, hence, an element of the symmetric group algebra 
(Boerner 1963). This connection has already been clearly recognised by Girardeau 
(1963, appendix) and part of the subsequent development follows his treatment of the 
subject. 
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The analysis is simplest in the space of coefficient functions 4, the latter being 
given in the Wannier representation. As was shown in § 2, in this representation the 
eigenvalue problem is 

( 4 . 1 ~ )  K$m, m , ( n t . .  . n v ) = - i M ( M - 1 ) + m ,  m , ( n , .  . . n M )  

where K is given as in (2.15b) and 

K , 4 m I  m M  ( n I . . . n~ 1 = CLm, m ,  ( n I . . . nj * 3 * n, . . . n~ 1 (4 . lb)  

Subsequently a few elementary facts and notions from the representation theory of 
9, will be needed, which will now be briefly summarised. For the details the reader 
is referred to Boerner’s (1963) monograph (see, in particular, chapter IV). 

Let 9 I w )  denote the Young diagram corresponding to the partition ( p ) =  
( p t  , p 2 ,  . . . , p, )  of M and let F:@) ( i  = 1 , .  . . , M !) denote the Young tableaux corre- 
sponding to 9‘p’.  For a given tableau 3”‘’ (now dropping the subscript) one defines 
two kinds of permutations, the row and the column permutations (Boerner 1963, ch 
IV). The former only permute the numbers of each row among themselves and 
constitute a subgroup 9 of Y’&, of order p , !  . . . p,,!, the p,  denoting the lengths of the 
rows of Similarly, the column permutations only permute the numbers of each 
column among themselves; they also form a subgroup 9 of YM of order P I ! .  . . p,,,!, 
where the p,  denote the lengths of the columns of @ @ ) .  To each tableau Y‘”) one 
can now associate a Young operator Y ( @ ’  as foIlows 

1 s I < j d M. 

where the symbol (- 1 )‘ denotes, as usual, the parity of the permutation q. The Young 
operators will play an  important role in the subsequent development. 

The derivation of the spectrum of K rests upon a famous theorem by J von 
Neumann, which will be stated here without proof (see Boerner 1963, p 108 for a proof 
of the theorem). Let 

A =  C a ( s ) s  
S E  Y, 

(4.3) 

be an element of the symmetric group algebra with the property 

pAq = ( - l ) ‘ A  (4.4) 

for all p E ?? and all q E 9 of a given Young tableau $@’. The theorem then states 
that there exists a number A‘w) such that 

(4.5) A = l i(f i’y‘”’ 

where Y ‘ @ ’  is the Young operator associated with the tableau Ycr ’ ,  
It can now be proved that the operator 

(4.6) 

where K is the exchange operator (2.15b), satisfies the requirements of von Neumann’s 
theorem. Since a detailed proof of this assertion has been given by Girardeau (1963, 
appendix), it will be omitted here. Then, since A of equation (4.6) satisfies the condition 
(4.4), the theorem is applicable and yields 

(4.7) 

A = “ ‘ @ ”  

K y I P I = , j I P l y I F ) .  
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This important relation (Girardeau 1963, equation (A21)) immediately yields the 
eigenfunctions of K .  As is evident from (4.7), any coefficient function of the form 

ILm, m w ( n , . . * n M ) = Y ‘ p ’ ) X m ,  m v ( n l . ’ . n M )  (4.8) 

where x may be arbitrary, is an eigenfunction of K ,  provided that I) does not identically 
vanish. The eigenvalues A ( p ’  of K have also been obtained by Girardeau (1963, 
appendix) and are given by 

He also showed that the A(p’)  obtained are the only eigenvalues of K for any given M 
and ( p ) .  Equation (4.9) implies that all eigenvalues are integers and lie on the interval 
[-;M(M - l ) ,  ;M(M - I)]. For illustration, the possible partitions ( p )  and the corre- 
sponding eigenvalues Aig)  for M = 2 to 4 are listed below: 

M = 2  ( P  1 ( 2 )  ( I 2 )  

M = 3  ( P )  (3) (291) ( I 3 )  

A(@’  3 0 -3 

M = 4  ( P )  (4) ( 3 9 1 )  (22) ( 2 ,  1 2 )  ( I 4 )  

1 - 1  

A(Pj 6 2 0 -2 -6. 

Although (4.9) gives a precise prescription how to calculate the eigenvalues for 
any given M and ( p ) ,  this formula is hardly applicable even for moderately large M, 
as one may readily verify. Therefore, any treatment based on projection operators 
(Lowdin 1962) is highly unpractical, since the method requires the knowledge of all 
A(*’ for any given M. The latter technique has been applied by Girardeau (1971) to 
construct a projected ‘effective’ Hamiltonian, in which the subsidiary condition ( 3 . 3 ~ )  
is incorporated as an additional exchange interaction. Due to the problems outlined 
above, such a treatment is limited to very low M, and only the case M = 2 has been 
treated in this manner (Girardeau 1971). In  summary, so far the problem of finding 
(approximate) eigenstates of fi which are, at the same time, exact eigenstates of K 
satisfying ( 3 . 3 ~ ) ,  has not been solved in a satisfactory way. 

The method to be presented here is rather simple and obvious and works equally 
well for any number M of pairs. I t  is based on the fact that condition ( 3 . 3 ~ )  needs 
to be solved only for the lowest eigenvalue of I? for a given M, i.e. for A ‘ ” ) =  
-M(  M - 1)/2. Therefore, as equation (4.8) shows, all we need to know is the Young 
operator corresponding to this particular eigenvalue. 

Now it follows from (4.9) that the lowest eigenvalue is attained for p k  = 1 ( k  = 
1 ,  . . . , n) and ii, = M611 ( I  = 1,  . . . , m )  and thus belongs to the Young diagram consisting 
of one column only (of length M ) .  Hence, the corresponding Young operator is just 
(apart from a factor l/m!) the familiar antisymmetriser usually denoted as 

(4.10) 
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The eigenfunction belonging to the lowest eigenvalue is then obtained by combining 
equations (4.8) and (4.10): 

$ml . . ,mw (nl  . * * nM 1 = AMXm, .mw (nl , . . nM 1 

(4.11) 

where p l , .  . . , p M  is the permuted set of indices 1 , .  . . , M. Hence, any function of 
the form (4.11), where x is still arbitrary (only subject to the condition that rl, is not 
identically zero), is a solution of the eigenvalue equation ( 4 . 1 ~ ) .  Clearly, the function 
,y itself can be obtained only by solving the eigenvalue problem of the Hamiltonian. 
If, in particular, x is assumed to be of the product form 

M 

X m ,  ... m M ( n l * * .  n M ) =  Il x m , ( n i )  
# = I  

equation (4.11) can be written as the determinant 

(4.12) 

(4.13) 

( X m M ( n l )  X m , , , ( n z )  * . *  X m , ( n M ) I  

The determinantal form (4.13) might be a good starting point for a variational treatment. 
Here it may also be mentioned that a similar form of trial wavefunction is used in 
valence bond theory (Gerratt 1971) and in the AGP method (Linderberg 1980). 

So far the discussion has been restricted to the Wannier representation. In order 
to link the results of this section with those obtained in 0 3, the analogue of (4.1 1) in 
the Bloch representation is needed. A straightforward calculation yields 

where use has been made of equations (2.12) and (2.13). The same arguments as those 
used in connection with (4.11) show that any function of the form (4.14), which is not 
identically zero, is a solution of ( 2 . 1 5 ~ ) .  Hence, as follows from the discussion in § 3, 
any vector IqM) of the form of equation (3.2a), where rl, is now given by (4.14), is an 
eigenvector of equation ( 3 . 3 ~ ) .  The problem to find the most general vector 
which satisfies the subsidiary condition (3.3u), is thus completely solved. 

5. Conclusion 

Based on Girardeau’s composite-particle theory the PPP (extended Hubbard) Hamil- 
tonian has been represented in terms of ideal-boson operators. As is the case with all 
boson representations of Fermi systems, the Hamiltonian H in boson space is defined 
on a proper subspace of the space of !I1 possible M-boson states ( M  = 1,2, .  . .). In 
Girardeau’s theory the restriction of H to the proper subspace is effected by means 
of th,” subsidiary condition (1.1). So far the problem to find (approximate) eigenstates 
of H which are, at the same time, exact eigenstates of equation (1.1) has not been 
solved in a satisfactory manner. In the present work a partial solution to this problem 
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has been achieved. We were able to derive the most general eigenvector (qM)  of 
equation (1.1) by using techniques commonly employed in the representation theory 
of the symmetric group. From the most general (qM)  a special eigenvector can be 
obtained, in which the coefficient function takes the form of an antisymmetrised product 
of pair orbitais. The latter form might be a good starting point for a variational 
treatment of H and relates the pair-theory approach to the valence bond theory and 
the AGP method. 
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